369 research outputs found

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Understanding Nuclei in the upper sd - shell

    Full text link
    Nuclei in the upper-sdsd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A≃\simeq 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.Comment: 8 pages, 13 figures, submitted for publication in the Proceedings of "Frontiers in Gamma-Ray Spectroscopy 2012 (FIG12), held at New Delhi, March 5th - 7th, 2012, Organized by Inter University Accelerator Center, New Delhi, Indi

    GAN-based Deidentification of Drivers' Face Videos: An Assessment of Human Factors Implications in NDS Data

    Full text link
    This paper addresses the problem of sharing drivers' face videos for transportation research while adhering to proper ethical guidelines. The paper first gives an overview of the multitude of problems associated with sharing such data and then proposes a framework on how artificial intelligence-based techniques, specifically face swapping, can be used for de-identifying drivers' faces. Through extensive experimentation with an Oak Ridge National Laboratory (ORNL) dataset, we demonstrate the effectiveness of face-swapping algorithms in preserving essential attributes related to human factors research, including eye movements, head movements, and mouth movements. The efficacy of the framework was also tested on various naturalistic driving study data collected at the Virginia Tech Transportation Institute. The results achieved through the proposed techniques were evaluated qualitatively and quantitatively using various metrics. Finally, we discuss possible measures for sharing the de-identified videos with the greater research community.Comment: Accepted in IEEE IV 202

    Wind Dependence of L-Band Radar Backscatter

    Get PDF
    Like other microwave frequency bands, L-band scattering coefficient (~`) measurements have shown a definite dependence on ocean surface wind speed (W).The relationship between the two depends on the observation angle of the radar.The satellite-borne L-band radars SEASAT-SAR and SIR-A made observations at fixed incidence angles, while the just completed SIR-B mission has made observations at multiple incidence angles. The present work uses the theory of scattering from a composite surface and generates an analytic function of ~" - W relationship for varying incidence angle at L-band by the method of empirical curve fitting

    Prediction of the aerodynamic behavior of a rounded corner square cylinder at zero incidence using ANN

    Get PDF
    AbstractThe aerodynamic behavior of a square cylinder with rounded corner edges in steady flow regime in the range of Reynolds number (Re) 5–45; is predicted by Artificial Neural Network (ANN) using MATLAB. The ANN has trained by back propagation algorithm. The ANN requires input and output data to train the network, which is obtained from the commercial Computational Fluid Dynamics (CFD) software FLUENT in the present study. In FLUENT, all the governing equations are discretized by the finite volume method. Results from numerical simulation and back propagation based ANN have been compared. It has been discovered that the ANN predicts the aerodynamic behavior correctly within the given range of the training data. It is additionally observed that back propagation based ANN is an effective tool to forecast the aerodynamic behavior than simulation, that has very much longer computational time

    Asymptotic analysis of Feynman diagrams and their maximal cuts

    Full text link
    The ASPIRE program, which is based on the Landau singularities and the method of power geometry to unveil the regions required for the evaluation of a given Feynman diagram asymptotically in a given limit, also allows for the evaluation of scaling coming from the top facets. In this work, we relate the scaling having equal components of the top facets of the Newton polytope to the maximal cut of given Feynman integrals. We have therefore connected two independent approaches to the analysis of Feynman diagrams.Comment: 34 pages latex, 7 figures and 2 tables, ancillary Mathematica files provided, substantially extended and improved, added new sections(sub-section-2.5, section-3,4,appendix-B), References added, version accepted for publication in EPJ

    Experimental Performance Evaluation of a Hyper-Branched Polymer Electrolyte for Rechargeable Li-Air Batteries

    Get PDF
    A hyper-branched polymer (HBP) electrolyte is synthesized for rechargeable lithium-air (Li-air) battery cell and experimentally evaluated its performance in actual battery cell environment. Several real-world battery cells were fabricated with synthesized HBP electrolyte, pure lithium metal as anode and an oxygen permeable air cathode to evaluate reproducibility of the rechargeable Li-air battery cell. The effect of various conditions such as various HBP based electrolytes, discharge current −0.1~0.5 mA, cathode preparation processes and carbon contents on the battery cell performance were experimentally evaluated using the fabricated battery cells under dry air condition. Detailed HBP electrolyte synthesis procedures and experimental performance evaluation of Li-air battery cell for various conditions are presented. The experimental results showed that different conditions and processes significantly affect the Li-air battery performance. Upon taking into account the effect of different conditions and processes, optimized HBP electrolyte materials, cathode process and conditions were determined. Several Li-air battery cells were fabricated with optimized conditions and optimized battery cell materials to determine the reproducibility and performance consistency. Experimental results showed that over 55–65 h of discharge occurred over 2.5 V terminal cell voltage with all three optimized Li-air battery cells. It implied that the optimized Li-air battery cells were reproducible and were able to hold charge over 2.5 V for more than 2 days. Experimental results of the Li-air battery cell with further refined optimized materials revealed that the battery cell can discharge more than 10 days (i.e., more than 250 h) at or above 2.0 V. The experimental results also showed that the Li-air battery discharge time got shorter as the discharge-charge cycle increases due to increase in internal resistances of battery cell materials. The experimental results confirmed that the lithium-air battery cell can be reproduced without loss of performance and can hold charge more than 10 days at or over 2.0 V. The investigation results obtained may usher a pathway to manufacture a long-life rechargeable Li-air battery cell in the near future
    • …
    corecore